- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Aksenov, Yevgeny (1)
-
Andersson, Tom R. (1)
-
Barros_Lourenço, Ricardo (1)
-
Blanchard-Wrigglesworth, Eduardo (1)
-
Byrne, James (1)
-
Coca-Castro, Alejandro (1)
-
Downie, Rod (1)
-
Elliott, Andrew (1)
-
Fouilloux, Anne (1)
-
Hosking, J Scott (1)
-
Hosking, J. Scott (1)
-
Jones, Daniel C. (1)
-
Law, Stephen (1)
-
McDonald, Andrew (1)
-
Paige, Brooks (1)
-
Phillips, Tony (1)
-
Pérez-Ortiz, María (1)
-
Rao, Yuhan (1)
-
Russell, Chris (1)
-
Sarojini, Beena Balan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, we explore the crucial role and challenges of computational reproducibility in geosciences, drawing insights from the Climate Informatics Reproducibility Challenge (CICR) in 2023. The competition aimed at (1) identifying common hurdles to reproduce computational climate science; and (2) creating interactive reproducible publications for selected papers of the Environmental Data Science journal. Based on lessons learned from the challenge, we emphasize the significance of open research practices, mentorship, transparency guidelines, as well as the use of technologies such as executable research objects for the reproduction of geoscientific published research. We propose a supportive framework of tools and infrastructure for evaluating reproducibility in geoscientific publications, with a case study for the climate informatics community. While the recommendations focus on future CIRCs, we expect they would be beneficial for wider umbrella of reproducibility initiatives in geosciences.more » « lessFree, publicly-accessible full text available January 16, 2026
-
Andersson, Tom R.; Hosking, J. Scott; Pérez-Ortiz, María; Paige, Brooks; Elliott, Andrew; Russell, Chris; Law, Stephen; Jones, Daniel C.; Wilkinson, Jeremy; Phillips, Tony; et al (, Nature Communications)Abstract Anthropogenic warming has led to an unprecedented year-round reduction in Arctic sea ice extent. This has far-reaching consequences for indigenous and local communities, polar ecosystems, and global climate, motivating the need for accurate seasonal sea ice forecasts. While physics-based dynamical models can successfully forecast sea ice concentration several weeks ahead, they struggle to outperform simple statistical benchmarks at longer lead times. We present a probabilistic, deep learning sea ice forecasting system, IceNet. The system has been trained on climate simulations and observational data to forecast the next 6 months of monthly-averaged sea ice concentration maps. We show that IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. This step-change in sea ice forecasting ability brings us closer to conservation tools that mitigate risks associated with rapid sea ice loss.more » « less
An official website of the United States government
